Dual nature of radiation is shown by
An astronaut floating freely in space decides to use his flash light as a rocket. He shines a $10$ watt light beam in a fixed direction so that he acquires momentum in the opposite direction. If his mass is $80$ kg, how long must he need to reach a velocity of $1$ $ms^{-1}$
$(a)$ Estimate the speed with which electrons emitted from a heated emitter of an evacuated tube impinge on the collector maintained at a potential difference of $500\;V$ with respect to the emitter. Ignore the small inttial speeds of the electrons. The specific charge of the electron, $i.e.$, the $e / m$ is glven to be $1.76 \times 10^{11}\; C\; kg ^{-1}$
$(b)$ Use the same formula you employ in $(a)$ to obtain electron speed for an collector potential of $10 \;MV$. Do you see what is wrong? In what way is the formula to be modified?
Assertion : Mass of moving photon varies inversely as the wavelength.
Reason : Energy of the particle $= mass\times(speed \,of \,light)^2$
If a source of power $4\,kW$ produces $10^{20}$ photons/second, the radiation belongs to a part of the spectrum called